Adenosine has previously been shown to stimulate K(+)-efflux and to block L-type calcium channels in atrial myocytes. The aim of the present study was to evaluate the contribution of K(+)-channels in the development of the negative inotropic and chronotropic responses to adenosine agonists in guinea-pig left and right atria, respectively. Tetraethylammonium (TEA) potentiated the negative inotropic and chronotropic responses to R-(-)-N6-(2-phenyl-isopropyl)-adenosine (R-PIA), seen as leftward shifts of the concentration-response curves. Glibenclamide had no effect on the negative inotropic response to R-PIA but increased the rate of onset of the negative chronotropic response in right atria. 4-Aminopyridine (4-AP, 10 mM), potentiated the left atrial inotropic responses to R-PIA, seen as a leftward shift of the concentration-response curve, but slowed the speed of onset of the response to a single concentration (10(-6) M) of R-PIA. This reduction in speed of onset of the response can explain the differences in effects of 4-AP on concentration-response curves reported here and previously. In the right atria, 4-AP (10 mM) inhibited the negative chronotropic responses to R-PIA, seen as a rightward shift of the concentration-response curve and reduction of the maximum response. 4-AP also slowed the onset of the right atrial rate response to R-PIA. These results support the theory that K(+)-efflux plays only a minor role in the negative inotropic responses of guinea-pig left atria to R-PIA. This apparently controls the speed of onset of the response. The negative chronotropic response of guinea-pig right atria to R-PIA appears to be much more dependent upon K(+)-efflux than for the negative inotropic response of the left atria.