We propose a planar chiral metamaterial (PCMM), which can function as a triple-band polarization angle independent 90 • polarization rotator. The unit cell of the PCMM is composed of bi-layered mutual twisted Fermat's spiral structure (FSS) resonators with four-fold rotation symmetry. The simulated and measured results show that the PCMM can work in triple-band and convert a linearly polarized (y-/x-polarized) wave to its cross-polarization (x-/y-polarized) or experience a near 90 • polarization rotation with a polarization conversion ratio of over 90%. The electric field and surface current distributions of the unit-cell structure are analyzed to study its physics mechanism. Compared with previous CMM-based rotator, our design has more operation frequencies in a single PCMM structure, a relative thinner thickness, and higher Q-factor. Good performances of the PCMM suggest promising applications in the polarization rotator or convertor that need to be integrated with other compact devices.