Based on the published data, the essence of computational graphics has been laid down. Have been reported examples of new results obtained only through accurate computer constructions and measurements. The work content is a presentation of new ways to achieve the goal by solving non-traditional engineering problems. The author's method of projection with time-stamps, which, in fact, is a computer descriptive geometry, allows solve multi-parameter (not to be confused with multi-dimensional) problems with 9 variables [1–3; 13]. The author’s method of two-axis equal-sized evolvement [11; 12; 17] allows quantitatively measurements of solid angles. The addition of trigonometric functions (sinuses, sinusoids, etc.) can also be considered as a novelty [10; 11; 14]. At the junction of analytic (AG) and descriptive geometries have been calculated parameters of dodecahedron and has been given its mathematical description. In the traditional AG task, the required parameters have been calculated graphically, including a point’s speed of movement. Has been presented the author’s method for determining the instantaneous center in theoretical mechanics. For the first time, the equality of the angles of rotation for points and the link as a whole has been established, and a continuous centroid has been built. By decomposition of vectors a new way for summing up theirs vertical projections has been demonstrated. The developed method of projections with time-stamps allows simultaneously consider such parameters as spatial coordinates of moving objects (two or more) in time, their speeds and even sizes, including the variable ones. Has been shown the possibility for graphical programming while solving systems of equations, as well as for graphical solution of algebraic and stereometric problems. This publication aims to disseminate computer methods for engineering problems solving.