The field of pediatric critical care has been hampered in the era of precision medicine by our inability to accurately define and subclassify disease phenotypes. This has been caused by heterogeneity across age groups that further challenges the ability to perform randomized controlled trials in pediatrics. One approach to overcome these inherent challenges include the use of machine learning algorithms that can assist in generating more meaningful interpretations from clinical data. This review summarizes machine learning and artificial intelligence techniques that are currently in use for clinical data modeling with relevance to pediatric critical care. Focus has been placed on the differences between techniques and the role of each in the clinical arena. The various forms of clinical decision support that utilize machine learning are also described. We review the applications and limitations of machine learning techniques to empower clinicians to make informed decisions at the bedside.