We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over an n-partite simplicial complex, which we call expanderized higher order random walks -where the sequence of updated coordinates correspond to the sequence of vertices visited by a random walk over an auxiliary expander graph H. When H is the clique with self loops on [n], this random walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the auxillary graph H. Our construction can be thought as a higher order random walk generalization of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005).We study the mixing times of our expanderized walks in two example cases: We show that when initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n) for sampling a uniformly random list colorings of a graph G of maximum degree ∆ = O(1) where each vertex has at least (11/6 − ε)∆ and at most O(∆) colors, (ii) O h n log n