2020
DOI: 10.4086/toc.2020.v016a002
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Abstract: We prove that for every n and 1 < t < n any tout of -n threshold secret sharing scheme for one-bit secrets requires share size log(t + 1). Our bound is tight when t = n − 1 and n is a prime power. In 1990 Kilian and Nisan proved the incomparable bound log(n − t + 2). Taken together, the two bounds imply that the share size of Shamir's secret sharing scheme (Comm. ACM 1979) is optimal up to an additive constant even for one-bit secrets for the whole range of parameters 1 < t < n. More generally, we show that fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
references
References 31 publications
0
0
0
Order By: Relevance