Hydrolysates obtained by autohydrolysis-posthydrolysis of corncobs were detoxified with charcoal, concentrated, supplemented with nutrients, and fermented with Debaryomyces hansenii. After biomass removal, the fermented media contained 0.1137 kg of nonvolatile components (NVC)/kg of liquor, which corresponded mainly to xylitol (0.6249 kg/kg of NVC) but also to minor amounts of inorganic components (measured as ashes), proteins, nonfermented sugars (xylose and arabinose), uronic acids, arabitol, and other nonvolatile components (ONVC). The media were subjected to further processing (sequential stages of adsorption, concentration, ethanol precipitation, concentration, and crystallization) to obtain food-grade xylitol. Adsorption experiments were carried out at various solid-to-liquor ratios. Under selected conditions (1 kg of charcoal/15 kg of liquors), the xylitol content increased to 0.6873 kg/kg of NVC, and almost total decoloration was achieved. The resulting liquor was concentrated by evaporation to increase its NVC content to 0.4032 kg/kg of liquor (corresponding to a xylitol concentration of 0.280 kg/kg of liquor), and ethanol was added to precipitate a part of the NVC (mainly proteins, but also uronic acids, ashes, and other nonvolatile compounds). Refined liquors (containing 0.7303 kg of xylitol/kg of NVC) were concentrated again, and ethanol was added (to reach 40-60% volume of the stream) to allow crystallization at -10 or -5 degrees C. Under selected conditions, 43.7% of xylitol contained in the initial fermentation broth was recovered in well-formed, homogeneous crystals, in which xylitol accounted for 98.9% of the total oven-dry weight. Material balances are presented for the whole processing scheme considered in this work.