2016
DOI: 10.2140/involve.2016.9-2
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Abstract: This paper examines invariants of the replacement product of two graphs in terms of the properties of the component graphs. In particular, we present results on the independence number, the domination number, and the total domination number of these graphs. The replacement product is a noncommutative graph operation that has been widely applied in many areas. One of its advantages over other graph products is its ability to produce sparse graphs. The results in this paper give insight into how to construct lar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?