The well-known 1-2-3 Conjecture asserts that the edges of every graph without isolated edges can be weighted with 1, 2 and 3 so that adjacent vertices receive distinct weighted degrees. This is open in general. We prove that every d-regular graph, d ≥ 2, can be decomposed into at most 2 subgraphs (without isolated edges) fulfilling the 1-2-3 Conjecture if d / ∈ {10, 11, 12, 13, 15, 17}, and into at most 3 such subgraphs in the remaining cases. Additionally, we prove that in general every graph without isolated edges can be decomposed into at most 24 subgraphs fulfilling the 1-2-3 Conjecture, improving the previously best upper bound of 40. Both results are partly based on applications of the Lovász Local Lemma.