Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Navon 2017) tests. In this paper we study tests that only consider restrictions along axis-parallel hyperplanes, which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006). While such tests are necessarily "weaker," they work for a more general class of codes, namely tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan 2008; Meir 2010). We present two results on axis-parallel tests. (1) Bivariate low-degree testing with low agreement. We prove an analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit for much larger fields. Namely, for the tensor product of the Reed-Solomon A preliminary version of this paper appeared in the Proceedings of the 21st International Workshop on Randomization and Computation (RANDOM'17). * Supported by the Center for Long-Term Cybersecurity at UC Berkeley.