Nonlinear optical properties of photonic crystal heterostructures with embedded n-i-p-i superlattices are investigated. Self-consistent calculations of the transmission and reflection spectra near the defect mode are performed using the transfer-matrix method and taking into account the gain saturation. Analysis of features and output characteristics is carried out for one-dimensional photonic crystal heterostructure amplifiers in the GaAs-GaInP system having at the central part an active "defect" from doubled GaAs n-i-p-i crystal layers. The gain saturation in the active layers in the vicinity of the defect changes the index contrast of the photonic structure and makes worse the emission at the defect mode. Spectral bistability effect, which can be exhibited in photonic crystal heterostructure amplifiers, is predicted and the hysteresis loop and other attending phenomena are described. The bistability behavior and modulation response efficiency demonstrate the potential possibilities of the photonic crystal heterostructures with n-i-p-i layers as high-speed optical amplifiers and switches.