Statistical Models and Decision Making for Robotic Scientific Information Gathering
DOI: 10.1575/1912/23632
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Abstract: Mobile robots and autonomous sensors have seen increasing use in scientific applications, from planetary rovers surveying for signs of life on Mars, to environmental buoys measuring and logging oceanographic conditions in coastal regions. This thesis makes contributions in both planning algorithms and model design for autonomous scientific information gathering, demonstrating how theory from machine learning, decision theory, theory of optimal experimental design, and statistical inference can be used to devel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 64 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?