Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Grooved nerve guide conduits (NGCs) have been effective in the clinical treatment of peripheral nerve injury. They are generally fabricated from a micro-structured spinneret using a spinning process, which easily can cause a variety of pores and morphological deviation. The topography of internal grooves as well as the porosity can greatly influence the therapeutic effect. Traditional optical or scanning electron microscopy (SEM) methods can be used to image the grooves; however, these methods are destructive and require slicing NGCs to prepare specimens suitable for imaging. Moreover, lengthy experiments and large batches of NGCs are required to ensure reliable results from both in vitro experiments and clinical studies. In this paper, a non-destructive method for evaluating the grooves and porosity of NGCs is proposed using ultrasonic imaging combined with rotary scanning and an image analysis algorithm. Two ultrasonic methods were used: a 25-MHz point-focus ultrasonic transducer applied to observe axial cross sections of the conduits and a 100-MHz point-focus ultrasonic transducer to detect large pores caused by defects. Furthermore, a theoretical algorithm for detecting the local porosity of a conduit based on density is proposed. Herein, the proposed acoustic method and traditional optical methods are evaluated and compared. A parameter representing the specific surface area of the internal grooves is introduced and computed for both the optical and acoustic methods, and the relative errors of the computed parameter values for three different NGCs were 7.0%, 7.9%, and 15.3%. The detected location and shape of pores were consistent between the acoustic and optical methods, and greater porosity was observed in the middle of the conduit wall. In this paper, the results of the acoustic and optical methods are presented and the errors relating to the acoustic factors, device characteristics, and image processing method are further analyzed.
Grooved nerve guide conduits (NGCs) have been effective in the clinical treatment of peripheral nerve injury. They are generally fabricated from a micro-structured spinneret using a spinning process, which easily can cause a variety of pores and morphological deviation. The topography of internal grooves as well as the porosity can greatly influence the therapeutic effect. Traditional optical or scanning electron microscopy (SEM) methods can be used to image the grooves; however, these methods are destructive and require slicing NGCs to prepare specimens suitable for imaging. Moreover, lengthy experiments and large batches of NGCs are required to ensure reliable results from both in vitro experiments and clinical studies. In this paper, a non-destructive method for evaluating the grooves and porosity of NGCs is proposed using ultrasonic imaging combined with rotary scanning and an image analysis algorithm. Two ultrasonic methods were used: a 25-MHz point-focus ultrasonic transducer applied to observe axial cross sections of the conduits and a 100-MHz point-focus ultrasonic transducer to detect large pores caused by defects. Furthermore, a theoretical algorithm for detecting the local porosity of a conduit based on density is proposed. Herein, the proposed acoustic method and traditional optical methods are evaluated and compared. A parameter representing the specific surface area of the internal grooves is introduced and computed for both the optical and acoustic methods, and the relative errors of the computed parameter values for three different NGCs were 7.0%, 7.9%, and 15.3%. The detected location and shape of pores were consistent between the acoustic and optical methods, and greater porosity was observed in the middle of the conduit wall. In this paper, the results of the acoustic and optical methods are presented and the errors relating to the acoustic factors, device characteristics, and image processing method are further analyzed.
Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. This study implements an implantable biomicrosystem for inducing pulse current for aiding nerve repair and monitoring the time-course changes of nerve impedance for assessing nerve regeneration in sciatic nerve injury rat model. For long-term implantation, a transcutaneous magnetic coupling technique is adopted for power and data transmission. For in vivo study, the implanted module was placed in the rat's abdomen and the cuff electrode was wrapped around an 8-mm sciatic nerve gap of the rat for nerve impedance measurement for 42 days. One group of animals received monophasic constant current via the cuff electrode and a second group had no stimulation between days 8-21. The nerve impedance increased to above 150% of the initial value in the nerve regeneration groups with and without stimulation whereas the group with no nerve regeneration increased to only 113% at day 42. The impedance increase in nerve regeneration groups can be observed before evident functional recovery. Also, the nerve regeneration group that received electrical stimulation had relatively higher myelinated fiber density than that of no stimulation group, 20686 versus 11417 fiber/mm (2). The developed implantable biomicrosystem is proven to be a useful experimental tool for long-term stimulation in aiding nerve fiber growth as well as impedance assessment for understanding the time-course changes of nerve regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.