Abstract:Background: Glomalin-related soil protein (GRSP) and soil organic carbon (SOC) contribute to the formation and stability of soil aggregates, but the mechanism by which global atmospheric nitrogen (N) deposition changes soil aggregate stability when it alters the distribution of GRSP and SOC in different aggregate fractions remains unknown. Methods: We used a gradient N addition (0-9 g N-2 y-1) in Pinus tabulaeformis forest for 2 years in northeast China and then examined the changes in SOC contents, total GRSP… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.