The quest for ubiquitous wireless connectivity, drives an increasing demand for compact and efficient means of frequency generation. Conventional synthesizer options, however, generally trade one requirement for the other, achieving either excellent levels of efficiency by leveraging LC-oscillators, or a very compact area by relying on ring-oscillators. This chapter describes a recently introduced class of inductorless frequency synthesizers, based on the periodic realignment of a ring-oscillator, that have the potential to break this tradeoff. After analyzing their jitter-power product, the conditions that ensure optimum performance are derived and a novel digital-to-time converter range-reduction technique is introduced, to enable low-jitter and low-power fractional-N frequency synthesis. A prototype, which implements the proposed design guidelines and techniques, has been fabricated in 65 nm CMOS. It occupies a core area of 0:0275 mm$$^{2}$$
2
and covers the 1:6-to-3:0 GHz range, achieving an absolute rms jitter (integrated from 30 kHz-to-30 MHz) of 397 fs at 2:5 mW power. With a corresponding jitter-power figure-of-merit of −244 dB in the fractional-N mode, the prototype outperforms prior state-of-the-art inductorless frequency synthesizers.