We present molecular line observations of the high-mass molecular clump IRAS 16562−3959 taken at 3 mm using the Atacama Large Millimeter/submillimeter Array (ALMA) at 1. 7 angular resolution (0.014 pc spatial resolution). This clump hosts the actively accreting high-mass young stellar object (HMYSO) G345.4938+01.4677, associated with a hypercompact Hii region. We identify and analyze emission lines from 22 molecular species (encompassing 34 isomers) and classify them into two groups, depending on their spatial distribution within the clump. One of these groups gathers shock tracers (e.g., SiO, SO, HNCO) and species formed in dust grains like methanol (CH 3 OH), ethenone or ketene (H 2 CCO), and acetaldehyde (CH 3 CHO). The second group collects species resembling more the dust continuum emission morphology and are formed mainly in the gas-phase, like hydrocarbons (CCH, c-C 3 H 2 , CH 3 CCH), cyanopolyynes (HC 3 N and HC 5 N) and cyanides (HCN and CH 3 C 3 N). Emission from complex organic molecules (COMs) like CH 3 OH, propanenitrile (CH 3 CH 2 CN), and methoxymethane (CH 3 OCH 3 ) arise from gas in the vicinity of a hot molecular core (T 100 K) associated with the HMYSO. Other COMs such as propyne (CH 3 CCH), acrylonitrile (CH 2 CHCN), and acetaldehyde seem to better trace warm (T 80 K) dense gas. In addition, deuterated ammonia (NH 2 D) is detected mostly in the outskirts of IRAS 16562−3959 and associated with near-infrared dark globules, probably gaseous remnants of the clump's prestellar phase. The spatial distribution of molecules in IRAS 16562−3959 supports the view that in protostellar clumps, chemical tracers associated with different evolutionary stages -starless to hot cores/Hii regions -exist coevally.1, 7 2 98.4976 9.2 Sulfur dioxide 9 SO 2 J KaKc = 8 3,5 → 9 2,8 86.6430 55.2 J KaKc = 20 2,18 → 21 1,21 86.8329 207.8 J KaKc = 7 3,5 → 8 2,6 97.7067 47.8 J KaKc = 28 7,21 → 29 6,24 98.9817 493.7 J KaKc = 29 4,26 → 28 5,23 99.3978 440.7 Ammonia (azane) 10 NH 2 D J KaKc = 1 1,1 , 0 s → 1 0,1 , 0 a 85.9223 20.7 Silicon monoxide 11 SiO J = 2 → 1 86.8499 6.3 12 29 SiO J = 2 → 1 85.7612 6.2 13 30 SiO J = 2 → 1 84.7489 b11 6.1 Propyne (methylacetylene) 13 CH 3 CCH J, K = 5, 3 → 4, 3 85.4467 77.3 J, K = 5, 2 → 4, 2 85.4548 41.2 J, K = 5, 1 → 4, 1 85.4605 b1 19.5 J, K = 5, 0 → 4, 0 85.4605 b1 12.3 Formylium 14 H 13 CO + J = 1 → 0 86.7582 b6 4.2 15 HC 18 O + J = 1 → 0 85.1660 4.1 Cyclopropenylidene Table 1 continued on next page J KaKc = 11 0,11 → 10 0,10 96.9245 28.1 J KaKc = 11 2,10 → 10 2,9 98.1824 32.8 J KaKc = 11 6,6 → 10 6,5 98.5293 b2 68.4 J KaKc = 11 6,5 → 10 6,4 98.5293 b2 68.4 J KaKc = 11 7,4 → 10 7,3 98.5293 b2 82.8 J KaKc = 11 7,5 → 10 7,4 98.5293 b2 82.8 J KaKc = 11 8,3 → 10 8,2 98.5385 b3 99.5 J KaKc = 11 8,4 → 10 8,3 98.5385 b3 99.5 J KaKc = 11 5,7 → 10 5,6 98.5385 b3 56.2 J KaKc = 11 5,6 → 10 5,5 98.5385 b3 56.2 J KaKc = 11 9,2 → 10 9,1 98.5493 b4 118.4 J KaKc = 11 9,3 → 10 9,2 98.5493 b4 118.4 Table 1 continued on next page J KaKc = 11 4,8 → 10 4,7 98.5701 b5 46.2 J KaKc = 11 4,7 → 10 4,6 98.5712 b...