This article presents a brushless DC motor (BLDCM) drive for a maritime electric vehicle (MEV) application. The presented BLDCM drive uses a bridgeless Cuk-buckboost (BL-Cuk-BB) converter for input-side power factor (PF) improvement. The BL-Cuk-BB converter uses the buckboost converter for the negative half-cycles of the input AC voltages and the Cuk converter for the positive half-cycles. In the case of MEVs, the drive systems are generally fed by diesel engine generators (DEGs). The asymmetric BL-Cuk-BB converter is operated in a discontinuous inductor current mode (DICM) in the present work to attain better power quality. The usage of a second-order buckboost converter with a fourth-order Cuk converter results in a decrement in the net order of the system. Additionally, the input inductor of the Cuk converter also participates as the filter component along with capacitor C2 during buckboost converter operation to enhance the power quality. The total component count reduction in the BL-Cuk-BB converter is also achieved by eliminating the usage of extra/external back-feeding diodes, which are generally used in bridgeless schemes. The present scheme uses the inbuilt anti-parallel diodes for the same purpose. The lesser components requirement in the BL-Cuk-BB-converter-based BLDCM drive implies lesser cost and volume, along with greater reliability, lower conduction losses, and lower weight of the BLDCM drive, which adds to the merits of the model. The paper includes a detailed mathematical model and stability analysis using pole-zero maps and bode plots of the BL-Cuk-BB converter for each half-supply AC voltage cycle. The BL-Cuk-BB-converter-based BLDCM drive for an EV application has been developed on the MATLAB/Simulink platform for a DICM operation, and the MATLAB simulation results have been presented for validation of the BL-Cuk-BB-converter-based BLDCM drive.