Abstract:Weather monitoring systems, such as Doppler radars, collect a high volume of measurements with fine spatial and temporal resolutions that provide opportunities to study many convective weather events. This study examines the spatial and temporal characteristics of severe thunderstorm life cycles in central United States mainly covering Kansas, Oklahoma, and northern Texas during the warm seasons from 2010 to 2014. Thunderstorms are identified using radar reflectivity and cloud-to-ground lightning data and are tracked using a directed graph model that can represent the whole life cycle of a thunderstorm. Thunderstorms were stored in a GIS database with a number of additional thunderstorm attributes. Spatial and temporal characteristics of the thunderstorms were analyzed, including the yearly total number of thunderstorms, their monthly distribution, durations, initiation time, termination time, movement speed and direction, and the spatial distributions of thunderstorm tracks, initiations, and terminations. Results revealed that thunderstorms were most frequent across the eastern part of the study area, especially at the borders between Kansas, Missouri, Oklahoma, and Arkansas. Finally, thunderstorm occurrence is linked to land cover, including a comparison of thunderstorms between urban and surrounding rural areas. Results demonstrated that thunderstorms would favor forests and urban areas. This study demonstrates that advanced GIS representations and analyses for spatiotemporal events provide effective research tools to meteorological studies.