To reduce the power consumption of a TDC in high-speed applications, a TDC architecture applied to SS ADC is proposed to reduce redundant counting. This structure can remove the identical part between two rows of pixel signals in a CMOS image sensor by adjusting the start and stop signal of the TDC, which will reduce the number of flipping of D flip-flops in the TDC. This structure requires the simultaneous readout of two rows of pixels in the high-speed CMOS image sensor. In the 110 nm CMOS process, simulation results show that the designed 5-bit TDC achieves an effective number of bits (ENOB) at 4.72 bits and a figure-of-merit (FOM) at 104.7–162.3 fJ/step, with a power consumption ranging from 60 µW to 93 µW. Compared with traditional counting methods, the proposed TDC can reduce counting power consumption by 30%.