bPhysical and chemical disinfection methods have been proposed with the aim of controlling Legionella water contamination. To date, the most effective procedures for reducing bacterial contamination have not yet been defined. The aim of this study was to assess the long-term effectiveness of various disinfection procedures in order to reduce both culturable and nonculturable (NC) legionellae in different hospital water networks treated with heat, chlorine dioxide, monochloramine, and hydrogen peroxide. The temperature levels and biocide concentrations that proved to give reliable results were analyzed. In order to study the possible effects on the water pipes, we verified the extent of corrosion on experimental coupons after applying each method for 6 months. The percentage of positive points was at its lowest after treatment with monochloramine, followed by chlorine dioxide, hydrogen peroxide, and hyperthermia. Different selections of Legionella spp. were observed, as networks treated with chlorinebased disinfectants were contaminated mainly by Legionella pneumophila serogroup 1, hyperthermia was associated with serogroups 2 to 14, and hydrogen peroxide treatment was associated mainly with non-pneumophila species. NC cells were detected only in heat-treated waters, and also when the temperature was approximately 60°C. The corrosion rates of the coupons were within a satisfactory limit for water networks, but the morphologies differed. We confirm here that chemical disinfection controls Legionella colonization more effectively than hyperthermia does. Monochloramine was the most effective treatment, while hydrogen peroxide may be a promising alternative to chlorine-based disinfectants due to its ability to select for other, less virulent or nonpathogenic species.