The wireless technology resides at 5G global standard wireless communication. This standard enhances the network capacity, network coverage, lower latency and enormous bandwidth by increasing the operating frequencies of the communication standards. 5G standard promises to deliver a speed of 500 times faster than 4G by utilizing the technology such as massive MIMO, small cell, beam forming and full duplex technology. The higher operating frequencies leads to the path loss constrains and the device compact also one of the issues arises in the handheld wireless communication devices or massive machine type communications. To overcome these issues an effective antenna has to be designed for the new generation wireless standards. Most commonly used handheld communication devices, IoT devices and massive machine type communication uses microstrip patch antenna as radiating elements and the substrate materials associated with these antennas plays a key role for the development of an antenna. In this paper, investigations on six different substrate materials were done for the design of MIMO antenna. A rectangular microstrip antenna was designed under the operating frequency of 28 GHz using six different substrate materials such as Taconic TLY-5A,