Efficient inverse scattering algorithms for nonradial lossy objects are presented using singular-value decomposition to form reduced-rank representations of the scattering operator. These algorithms extend eigenfunction methods that are not applicable to nonradial lossy scattering objects because the scattering operators for these objects do not have orthonormal eigenfunction decompositions. A method of local reconstruction by segregation of scattering contributions from different local regions is also presented. Scattering from each region is isolated by forming a reduced-rank representation of the scattering operator that has domain and range spaces comprised of far-field patterns with retransmitted fields that focus on the local region. Methods for the estimation of the boundary, average sound speed, and average attenuation slope of the scattering object are also given. These methods yielded approximations of scattering objects that were sufficiently accurate to allow residual variations to be reconstructed in a single iteration. Calculated scattering from a lossy elliptical object with a random background, internal features, and white noise is used to evaluate the proposed methods. Local reconstruction yielded images with spatial resolution that is finer than a half wavelength of the center frequency and reproduces sound speed and attenuation slope with relative root-mean-square errors of 1.09% and 11.45%, respectively.