In delivering fifth generation (5G) communication networks, the fundamental advancements in the scale of antenna arrays, density of networks, mobility of communicating nodes, size of cells, and range of frequencies necessitate the derivation of an appropriate and reliable channel model. A tunable three dimensional (3-D) geometric channel model comprehending the mobility of user terminal together with high degree of flexibility in modelling the shape, orientation, and scale of the scattering region is proposed. Characterization of Doppler spectrum, quantization of multipath dispersion in angular domain, and second order fading statistics of the radio propagation channel is presented. Mathematical expressions for joint and marginal probability density function (PDF) of Doppler shift and multipath power are derived for this advanced 3-D hollow geometric scattering model. Next, an analysis on the Doppler spectrum is presented, where the impact of various physical channel parameters on its statistical characteristics is analyzed. Since, the quantification of multipath dispersion in 3-D angular domain is of vital importance for designing large scale planner antenna arrays with very high directional resolution for emerging 5G communications, therefore, a thorough analysis on the multipath shape factors (SFs) of the proposed analytical 3-D channel model is conducted. Finally, the analysis on SFs is extended for characterization of second order fading statistics of multipath channels.