This paper presents a novel wideband circularly polarized millimeter-wave (mmWave) hemispherical dielectric resonator antenna (HDRA). Two distinct configurations of alumina dielectric resonator antennas (DRAs) are investigated, each featuring a different coating: the first configuration incorporates a polyimide layer, while the second involves a perforated alumina. Both configurations demonstrate promising characteristics, including impedance and axial ratio (AR) bandwidths of 58% and 17.7%, respectively, alongside a maximum gain of 10 dBic at 28 GHz. Leveraging additive manufacturing technology, the HDRA with the perforated coating layer is fabricated, simplifying assembly and eliminating potential air gaps between layers, thereby enhancing the overall performance. This innovative approach yields a circularly polarized (CP) HDRA suitable for Beyond 5G (B5G) communication systems. Agreement between measurements and simulations validates the efficacy of the proposed design, affirming its potential in practical applications.