Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Fuyun Fault is a typical intraplate, slow-slipping fault, but has been repeatedly ruptured by surface wave magnitude (Ms) ≥ 8.0 earthquakes. The 11 August 1931 Ms 8.0 Fuyun earthquake resulted in more than 10,000 casualties in the sparsely populated Fuyun area. Cosmogenic 10Be dating of offset landforms produced by prehistoric Ms ≥ 8.0 earthquakes yields an average recurrence interval of 9,700 ± 3,300 years, much longer than previously estimated 2,000–4,500 years, clouding our understanding of the timing and recurrence behavior of past earthquakes originating from the Fuyun Fault. Reflection seismic data reveal widely distributed subaquatic faults in Yileimu Lake, implying high sensitivity of the lake sediments to paleoearthquakes originating from the Fuyun Fault. Two new long sediment cores (Y20A: 267 cm; Y20B: 890 cm) together with previously published two short cores (Y19: 71 cm; Y20: 31.5 cm) from the depocenter and nearshore zone of Yileimu Lake are used for stratigraphic correlations and analyses of sedimentary structures, grain-size distributions, magnetic susceptibility, elemental composition and carbon content. The mass-wasting deposits with underlying soft-sediment deformation structures (SSDS) in the Y20B core indicate six siliciclastic-enriched sandy sediment fluxes from earthquake-triggered landslides of granitic rocks, and isolated SSDS record three additional earthquake-induced in situ deformations. Turbidite-like deposits with sorting indices >3 and Si contents >700 counts per second (cps) are comparable to those of the seismic mass-wasting deposits, and are thus interpreted as seismites from earthquake-induced re-deposition of nearshore sediments. There are a total of 20 seismic events recorded by the Y20B core. Seismic intensity calculation results, combined with historical seismic data, provide potential magnitudes of Ms ≥ 8.0, Ms ≥ 7.0, and Ms ≥ 5.5 for the earthquake-triggered mass-wasting deposits, SSDS, and turbidite-like seismites, respectively, in Yileimu Lake, generally consistent with previously published magnitude thresholds. Radiocarbon dating and stratigraphic correlations constrain the timing of these past earthquakes to ∼28 cal kyr BP. This unique, long lacustrine paleoseismic record suggests a weakly periodic pattern with recurrence intervals between 2,317 and 7,830 years and an average of 5,303 years for potential Ms ≥ 8.0 earthquakes, and reveals an unprecedented high frequency of potential Ms ≥ 7.0 earthquakes originating from the Fuyun Fault in the last 5 kyr, demonstrating the urgent need for an improved assessment of seismic hazards and risks in the Fuyun Fault zone.
The Fuyun Fault is a typical intraplate, slow-slipping fault, but has been repeatedly ruptured by surface wave magnitude (Ms) ≥ 8.0 earthquakes. The 11 August 1931 Ms 8.0 Fuyun earthquake resulted in more than 10,000 casualties in the sparsely populated Fuyun area. Cosmogenic 10Be dating of offset landforms produced by prehistoric Ms ≥ 8.0 earthquakes yields an average recurrence interval of 9,700 ± 3,300 years, much longer than previously estimated 2,000–4,500 years, clouding our understanding of the timing and recurrence behavior of past earthquakes originating from the Fuyun Fault. Reflection seismic data reveal widely distributed subaquatic faults in Yileimu Lake, implying high sensitivity of the lake sediments to paleoearthquakes originating from the Fuyun Fault. Two new long sediment cores (Y20A: 267 cm; Y20B: 890 cm) together with previously published two short cores (Y19: 71 cm; Y20: 31.5 cm) from the depocenter and nearshore zone of Yileimu Lake are used for stratigraphic correlations and analyses of sedimentary structures, grain-size distributions, magnetic susceptibility, elemental composition and carbon content. The mass-wasting deposits with underlying soft-sediment deformation structures (SSDS) in the Y20B core indicate six siliciclastic-enriched sandy sediment fluxes from earthquake-triggered landslides of granitic rocks, and isolated SSDS record three additional earthquake-induced in situ deformations. Turbidite-like deposits with sorting indices >3 and Si contents >700 counts per second (cps) are comparable to those of the seismic mass-wasting deposits, and are thus interpreted as seismites from earthquake-induced re-deposition of nearshore sediments. There are a total of 20 seismic events recorded by the Y20B core. Seismic intensity calculation results, combined with historical seismic data, provide potential magnitudes of Ms ≥ 8.0, Ms ≥ 7.0, and Ms ≥ 5.5 for the earthquake-triggered mass-wasting deposits, SSDS, and turbidite-like seismites, respectively, in Yileimu Lake, generally consistent with previously published magnitude thresholds. Radiocarbon dating and stratigraphic correlations constrain the timing of these past earthquakes to ∼28 cal kyr BP. This unique, long lacustrine paleoseismic record suggests a weakly periodic pattern with recurrence intervals between 2,317 and 7,830 years and an average of 5,303 years for potential Ms ≥ 8.0 earthquakes, and reveals an unprecedented high frequency of potential Ms ≥ 7.0 earthquakes originating from the Fuyun Fault in the last 5 kyr, demonstrating the urgent need for an improved assessment of seismic hazards and risks in the Fuyun Fault zone.
It is strongly debated whether the Westerlies and the East Asian summer monsoon (EASM) are in‐phase, anti‐phase or out‐of‐phase, and how hydroclimatic changes in the above two climate systems affected trans‐Eurasian cultural exchanges during the late Holocene. In this study, we establish a 3500‐a‐long paleoclimatic sequence based on high‐resolution analyses of sedimentological and geochemical data of a well‐dated sediment core from Yileimu Lake in southern Altay. High percentages of the >63‐µm fraction and high values of Zr/Rb and Rb/Sr ratios indicate strong transport of weakly weathered, coarse sediments into the depocenter of the lake caused by enhanced surface runoff and catchment erosion associated with a wet climate, and vice versa. High values of Ca and total inorganic carbon (TIC) contents imply increased precipitation of endogenic carbonates in the lake water under intense evaporation associated with a dry climate, and vice versa. This new record indicates two wet intervals at 3500–2300 and 600–100 cal a bp, interrupted by a severe and prolonged dry interval from 2300 to 1000 cal a bp, and a mild dry interval with occasionally wet conditions from 1000 to 600 cal a bp. These results are broadly consistent with other paleoclimatic records in Westerlies‐dominated Asia and are generally anti‐phase with those in the EASM region. We suggest that a strengthening/weakening and southward/northward migration of the Westerlies during a negative/positive phase of the North Atlantic Oscillation (NAO) transported more/less water vapor into arid Asia. Meanwhile, a decreasing/increasing El Niño‐Southern Oscillation (ENSO) superimposed on a southward/northward shift of the Intertropical Convergence Zone (ITCZ) triggered a weakening/strengthening and southward/northward movement of the West‐Pacific subtropical high (WPSH), resulting in decreasing/increasing EASM intensity. In addition, the wet climate from 3500 to 2300 cal a bp may have contributed to the development of nomadic herding in the eastern Eurasian Steppe and Altay region, and to the opening of the proto‐Silk Roads. Potentially, intense seismic activities in the Altay Mountains ~3500 cal a bp may have also promoted the opening of the proto‐Silk Roads by forcing the herdsmen to move to the inter‐mountainous basins. The strong EASM intensity from 2300 to 1000 cal a bp in eastern China may have contributed to the creation of the ancient Silk Roads by the Han Dynasty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.