In this study, we investigated toroidal shell wrinkling in free hydroforming. We specifically focused on toroidal shells with a regular hexagonal cross-section. Membrane theory was used to examine the distribution of stress and yield load in both preform and toroidal shells. The wrinkling moment was then predicted using an empirical formula of shell buckling. In addition, the wrinkling state was investigated using a general statics method, and the free hydroforming of toroidal shells was simulated using the Riks method. Subsequently, nonlinear buckling and equilibrium paths were analyzed. A toroidal preform was manufactured, and free hydroforming experiments were conducted. Overall, the experimental results confirmed the accuracy of the theoretical predictions and numerical simulations. This indicates that the prediction method used in the study was effective. We also found that wrinkling occurs during hydroforming in the inner region of toroidal shells due to compressive stress. Consequently, we improved the structure of the toroidal shells and performed analytical calculations and numerical simulations for the analysis. Our results indicate that wrinkling can be eliminated by increasing the number of segments on the inner side of toroidal preforms, thereby improving the quality of toroidal shells.