In high-purity GaN grown by hydride vapor phase epitaxy, the commonly observed yellow luminescence (YL) band gives way to a green luminescence (GL) band at high excitation intensity. We propose that the GL band with a maximum at 2.4 eV is caused by transitions of electrons from the conduction band to the 0/+ level of the isolated C N defect. The YL band, related to transitions via the −/0 level of the same defect, has a maximum at 2.1 eV and can be observed only for some high-purity samples. However, in less pure GaN samples, where no GL band is observed, another YL band with a maximum at 2.2 eV dominates the photoluminescence spectrum. The latter is attributed to the C N O N complex.