2019
DOI: 10.18280/mmep.060315
|View full text |Cite
|
Sign up to set email alerts
|

A Backpropagation Neural Network-based Flexural-tensile Strength Prediction Model for Asphalt Mixture in Cold Regions under Cyclic Thermal Stress

Abstract: This paper attempts to disclose how the varying cold season temperature affects the performance of asphalt mixture i=n cold regions, and create a model to predict the flexuraltensile strength under cyclic thermal stress. For this purpose, the author investigated the influencing factors of asphalt mixture performance in cold regions, such as temperature level and variation in temperature difference, and employed the backpropagation neural network (BPNN) to learn, train and verify 120 samples of SBS AC-13 databa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 13 publications
(14 reference statements)
0
0
0
1
Order By: Relevance
“…Lapisan tersembunyi bisa mempunyai lebih dari satu lapisan [11]. Korespondensi internodal secara efektif mencirikan properti pemetaan nonlinier dari Backpropagation, memungkinkan jaringan untuk mengungkapkan mekanisme dan prinsip masalah nonlinier yang kompleks [12]. Operasi neuron artifisial mencakup elemen non-linier dengan fungsi aktivasi dan dua parameter, yaitu bobot (W) dan bias (b) [13].…”
Section: Pendahuluanunclassified
“…Lapisan tersembunyi bisa mempunyai lebih dari satu lapisan [11]. Korespondensi internodal secara efektif mencirikan properti pemetaan nonlinier dari Backpropagation, memungkinkan jaringan untuk mengungkapkan mekanisme dan prinsip masalah nonlinier yang kompleks [12]. Operasi neuron artifisial mencakup elemen non-linier dengan fungsi aktivasi dan dua parameter, yaitu bobot (W) dan bias (b) [13].…”
Section: Pendahuluanunclassified