In a mixed-model assembly line (MMAL), varying models of the same basic product are produced in a facultative sequence. This gives rise to the short-term model sequencing problem, which has to decide on the production sequence of a given number of model copies so that work overload is minimised. Recently, many MMALs have been arranged in 'U-lines', where one operator supervises both the entrance and the exit. This paper addresses the model sequencing problem on a paced mixed-model U-line in a cyclic production environment. Some useful properties of the problem are characterised, and the problem is formulated to minimise the steady-state work overload. A branch-and-bound algorithm is proposed to solve small-sized problems, and a heuristic is proposed for practical-sized problems. Numerical experiments on 540 randomly generated instances show that the proposed heuristic can find near-optimal solutions efficiently.