Multifidelity methods are widely used for statistical estimation of quantities of interest (QoIs) in uncertainty quantification using simulation codes of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information of the QoIs. In this paper, we introduce a semi-parametric approach that aims to effectively describe the distribution of a scalar-valued QoI in the multifidelity setup. Under a linear model hypothesis, we propose an exploration-exploitation strategy to reconstruct the full distribution of a scalar-valued QoI using samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adaptively allocate computational budget for parametric estimation and non-parametric reconstruction. Assuming the linear model is correct, we prove that such a procedure is consistent, and converges to the optimal policy (and hence optimal computational budget allocation) under an upper bound criterion as the budget goes to infinity. A major advantage of our approach compared to several other multifidelity methods is that it is automatic, and its implementation does not require a hierarchical model setup, cross-model information, or a priori known model statistics. Numerical experiments are provided in the end to support our theoretical analysis.