A Baseline Drift-Elimination Algorithm for Strain Measurement-System Signals Based on the Transformer Model
Yusen Wang,
Lei Zhang,
Xue Qi
et al.
Abstract:Strain measurements are vital in engineering trials, testing, and scientific research. In the process of signal acquisition, baseline drift has a significant impact on the accuracy and validity of data. Traditional solutions, such as discrete wavelet transform and empirical mode decomposition, cannot be used in real-time systems. To solve this problem, this paper proposes a Transformer-based model to eliminate the drift in the signal. A self-attentive mechanism is utilized in the encoder of the model to learn … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.