2017
DOI: 10.1534/genetics.116.195008
|View full text |Cite
|
Sign up to set email alerts
|

A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation

Abstract: Whole-genome bisulphite sequencing (WGBS) can identify important methylation differences between diseased and healthy samples. However, results from...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
3
1

Relationship

2
8

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 71 publications
0
11
0
Order By: Relevance
“…During the development of crescentic glomerulonephritis, the major pathogenic event that causes crescent formation is the rupture of glomerular capillaries, which allows a relatively early macrophage infiltration into the Bowman’s space. There have been numerous reports showing that macrophage activity and numbers are critical in the inflammatory phase of Crgn ( Duffield et al 2005 ; Wang et al 2007 ; Wang and Harris 2011 ) and our group has contributed to the identification of genetic and epigenetic determinants of macrophage function, which associate with susceptibility to Crgn in rats and humans ( Aitman et al 2006 ; Behmoaras et al 2008 , 2010 ; Page et al 2012 ; Deplano et al 2013 ; Hull et al 2013 ; Kang et al 2014 ; Rackham et al 2017 ).…”
Section: Discussionmentioning
confidence: 99%
“…During the development of crescentic glomerulonephritis, the major pathogenic event that causes crescent formation is the rupture of glomerular capillaries, which allows a relatively early macrophage infiltration into the Bowman’s space. There have been numerous reports showing that macrophage activity and numbers are critical in the inflammatory phase of Crgn ( Duffield et al 2005 ; Wang et al 2007 ; Wang and Harris 2011 ) and our group has contributed to the identification of genetic and epigenetic determinants of macrophage function, which associate with susceptibility to Crgn in rats and humans ( Aitman et al 2006 ; Behmoaras et al 2008 , 2010 ; Page et al 2012 ; Deplano et al 2013 ; Hull et al 2013 ; Kang et al 2014 ; Rackham et al 2017 ).…”
Section: Discussionmentioning
confidence: 99%
“…The crossed random-effects AMP i and CpG j follow a normal distribution, AMP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$_{i}|\tau \sim \operatorname{N}(0,\tau ^{-1})$\end{document} and CpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$_{j}|\upsilon \sim \operatorname{N}(0,\upsilon ^{-1})$\end{document} with a non-informative prior precision \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\tau \sim \operatorname{Gam}(1,0.1)$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$(\operatorname{E}(\tau ) = 10$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\operatorname{Var}(\tau ) = 100)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\upsilon \sim \operatorname{Gam}(1,0.1)$\end{document}. For the LGF, we follow (24) and model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\boldsymbol{\mu }$\end{document} as a Random Walk of order 1 (RW1) (25), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mu _{j} | \mu _{j-1}, \rho _{j} \sim \operatorname{N}(\mu _{j-1},\rho _{j})$\end{document}, where ρ j = ρ| p j − p j − 1 | with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\rho ^{-1} \sim \operatorname{Gam}(1,0.1)$\end{document} and p j and p j − 1 the chromosomal position of two consecutive CpGs (with p 0 = 0). With this specification the dependence between methylation levels depends on the distance between the corresponding CpGs, i.e., the closer the CpGs, the stronger the dependence.…”
Section: Methodsmentioning
confidence: 99%
“…Bisulphite conversion is necessary for both older (microarray) and newer sequencing-based technologies, facilitating the detection of methylated cytosines (one of four DNA component bases), though is a harsh process that can affect the quality of DNA for downstream analysis [37]. Whole-genome bisulphite sequencing (WGBS) was used to identify methylation of the IFITM3 gene as a candidate in the development of kidney disease [38]. Legendre et al [39] used WGBS to develop a blood-based methylation patterns that could be used to stratify breast cancer patients into metastatic disease risk groups.…”
Section: Hts: From Biomedical Research To Clinical Applicationmentioning
confidence: 99%