Resumo -O objetivo deste trabalho foi selecionar, sob a perspectiva bayesiana, genótipos de feijão-caupi (Vigna unguiculata) que reúnam alta adaptabilidade e estabilidade fenotípicas, no Estado do Mato Grosso do Sul. Foram utilizados dados de quatro experimentos, conduzidos em delineamento de blocos ao acaso, em que a produtividade de grãos de 20 genótipos de feijão-caupi semiprostrado foi avaliada. Para representar as distribuições a priori pouco informativas, utilizaram-se distribuições de probabilidade com grande variância; e, para representar distribuições a priori informativas, adotou-se o conceito de metanálise, com uso de informações de trabalhos anteriores. A comparação entre as distribuições a priori foi realizada por meio do fator de Bayes. A abordagem bayesiana proporciona maior acurácia na seleção de genótipos de feijão-caupi semiprostrado, com elevadas adaptabilidade e estabilidade fenotípicas avaliadas por meio da metodologia de Eberhart & Russell. Com base nas prioris informativas, os genótipos MNC99-507G-4, TE97-309G-24, MNC99-542F-7 e BR 17-Gurguéia são classificados como de alta adaptabilidade a ambientes favoráveis. Já os genótipos TE96-290-12G, MNC99-510F-16, MNC99-508G-1, MNC99-541F-21, MNC99-542F-5 e MNC99-547F-2 apresentam alta adaptabilidade a ambientes desfavoráveis.Termos para indexação: Vigna unguiculata, fator de Bayes, interação genótipo x ambiente, metanálise, priori informativa.
Bayesian perspective in the selection of cowpea genotypes in trials of value for cultivation and useAbstract -The objective of this work was to select, under the Bayesian perspective, cowpea (Vigna unguiculata) genotypes that meet high phenotypic adaptability and stability, in the state of Mato Grosso do Sul, Brazil. Data from four experiments, conducted in a randomized complete block design, were used, in which grain yield of 20 semiprostrate cowpea genotypes was evaluated. To represent non-informative prior distributions, probability distributions with high variance were used; and, to represent informative prior distributions, a metanalysis concept was adopted using information from previous studies. The comparison between the prior distributions was done using the Bayes factor. The Bayesian approach provides greater accuracy in the selection of semiprostrate cowpea genotypes, with high phenotypic adaptability and stability assessed by the Eberhart & Russell methodology. Based on the informative priors, the MNC99-507G-4, TE97-309G-24, MNC99-542F-7, and BR 17-Gurguéia genotypes are classified as with high adaptability to favorable environments. The TE96-290-12G, MNC99-510F-16, MNC99-508G-1, MNC99-541F-21, MNC99-542F-5, and MNC99-547F-2 genotypes have high adaptability to unfavorable environments.Index terms: Vigna unguiculata, Bayes factor, genotype x environment interaction, metanalysis, informative prior.
IntroduçãoO feijão-caupi [Vigna unguiculata (L.) Walp.] é uma das fontes alimentares mais importantes para regiões tropicais e subtropicais do planeta. Atualmente, o Brasil é o terceiro maior produtor m...