Modeling highway traffic crash frequency is an important approach for identifying high crash risk areas that can help transportation agencies allocate limited resources more efficiently, and find preventive measures. This paper applies a Poisson regression model, Negative Binomial regression model and then proposes an Artificial Neural Network model to analyze the 2008-2012 crash data for the Interstate I-90 in the State of Minnesota in the US. By comparing the prediction performance between these three models, this study demonstrates that the Neural Network is an effective alternative method for predicting highway crash frequency.
KeywordsPoisson Regression, Negative Binomial Regression, Artificial Neural Network, Crash Frequency 2011 fatalities, and an additional of 2,362,000 people were injured in crashes with an increase of 6.5% over 2011 injuries. Therefore, there should be further research studies on the risk factors associated with traffic accidents. The occurrence of crashes can be attributed to driver, vehicle, environment, and roadway characteristics. This paper begins with a literature review of modeling accident frequencies, followed by a description of the data used in the analysis, then introduces the methodological approach of evaluating Poisson regression and Negative Binomial regression, and then proposes the Artificial Neural Network approach to improve upon the A. Abdulhafedh 170 two previous methods, followed by discussion of findings, and comparison of results. The paper concludes with a summary and directions for future researches.
Literature ReviewModeling of crash count data is very important topic in highway safety analysis, and in the past few decades, modelers have proposed a significant number of analysis tools for analyzing crash data. The number of crashes per year (or per more than one year, such as five years) is called the crash frequency, which has been widely used as an indicator of the crash occurrence at highways or certain segments of the roads. A variety of independent variables can affect crash frequency that are related to the driver behaviors, road geometric, vehicle, and environment. The influence of such variables on crash occurrence could significantly vary on case by case basis, but in general, past researches have shown that both behavioral factors related to the driver's errors, and nonbehavioral factors related to the road geometry, vehicle, and environment can significantly affect traffic accidents, and researchers usually extract only a limited number of variables from each class to be used as independent variables in the modeling process [1]. Previous researches in the literature that attempted to estimate crash frequency can be classified into two types. One type includes conventional univariate regression models, such as the Poisson regression model, Poisson-Gamma (Negative Binomial) model, Poisson-lognormal model, zero-inflated model, and Conway-Maxwell-Poisson model. The second type includes more specification-based models such as generalized additive models...