2021
DOI: 10.5194/bg-2021-238
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Bayesian sequential updating approach to predict phenology of silage maize

Abstract: Abstract. Crop models are tools used for predicting year to year crop development on field to regional scales. However, robust predictions are hampered by factors such as uncertainty in crop model parameters and in the data used for calibration. Bayesian calibration allows for the estimation of model parameters and quantification of uncertainties, with the consideration of prior information. In this study, we used a Bayesian sequential updating (BSU) approach to progressively incorporate additional data at a y… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?