Vehicle routing problems constitute a class of combinatorial optimization tasks that search for optimal routes (e.g., minimal cost routes) for one or more vehicles to attend a set of nodes (e.g., cities or customers). Finding the optimal solution to vehicle routing tasks is an NP-hard problem, meaning that the size of problems that can be solved by exhaustive search is limited. From a practical perspective, this class of problems has a wide and important set of applications, from the distribution of goods to the integrated chip design. Rooted on the use of collective intelligence, swarm-inspired algorithms, more specifically bee-inspired approaches, have been used with good performance to solve such problems. In this context, the present paper provides a broad review on the use of bee-inspired methods for solving vehicle routing problems, introduces a new approach to solve one of the main tasks in this area (the travelling salesman problem), and describes open problems in the field.