In this short communication, we report a new carbon material prepared from meta-linked polyaniline that exhibits weak antiferromagnetic interactions at low temperature. The synthesis of poly(meta-aniline), abbreviated as m-PANI, was conducted using the Ullmann reaction with the aid of Cu+ as a catalyst in the presence of K2CO3. After the generation of radical cations by vapor-phase doping with iodine, carbonization was performed to prepare carbon polyaniline (C-PANI), which comprises condensed benzene rings. Analysis with a superconducting quantum interference device revealed that the resultant carbon exhibits antiferromagnetism at low temperatures. The discovery of this weak antiferromagnetic carbon may contribute to the development of carbon magnets.