BackgroundThe incidence and mortality rates of stroke are escalating due to the growing aging population, which presents a significant hazard to human health. In the realm of stroke, brain-computer interface (BCI) technology has gained considerable attention as a means to enhance treatment efficacy and improve quality of life. Consequently, a bibliometric visualization analysis was performed to investigate the research hotspots and trends of BCI technology in stroke, with the objective of furnishing reference and guidance for future research.MethodsThis study utilized the Science Citation Index Expanded (SCI-Expanded) within the Web of Science Core Collection (WoSCC) database as the data source, selecting relevant literature published between 2013 and 2022 as research sample. Through the application of VOSviewer 1.6.19 and CiteSpace 6.2.R2 visualization analysis software, as well as the bibliometric online analysis platform, the scientific knowledge maps were constructed and subjected to visualization display, and statistical analysis.ResultsThis study encompasses a total of 693 relevant literature, which were published by 2,556 scholars from 975 institutions across 53 countries/regions and have been collected by 185 journals. In the past decade, BCI technology in stroke research has exhibited an upward trend in both annual publications and citations. China and the United States are high productivity countries, while the University of Tubingen stands out as the most contributing institution. Birbaumer N and Pfurtscheller G are the authors with the highest publication and citation frequency in this field, respectively. Frontiers in Neuroscience has published the most literature, while Journal of Neural Engineering has the highest citation frequency. The research hotspots in this field cover keywords such as stroke, BCI, rehabilitation, motor imagery (MI), motor recovery, electroencephalogram (EEG), neurorehabilitation, neural plasticity, task analysis, functional electrical stimulation (FES), motor impairment, feature extraction, and induced movement therapy, which to a certain extent reflect the development trend and frontier research direction of this field.ConclusionThis study comprehensively and visually presents the extensive and in-depth literature resources of BCI technology in stroke research in the form of knowledge maps, which facilitates scholars to gain a more convenient understanding of the development and prospects in this field, thereby promoting further research work.