Maritime transport is crucial for global trade, as over 80% of goods are transported by sea. Recent conflicts have exposed the vulnerability of shipping routes to disruptions. Therefore, devising an optimal plan for naval escort operations is critical to ensure that ships are safely escorted. This study addresses the naval escort operation problem by constructing a mixed-integer programming model that integrates escort scheduling of the warship with the speed optimization of liner ships, aiming to minimize overall cargo delay and fuel consumption costs while ensuring the protection of all ships. The results indicate that as the number of container ships increases, ships wait longer before departure with the warship, leading to a higher average delay cost per ship. For instances with a single ship type, ships have similar sailing speeds on different legs. The proposed model balances cargo delivery timeliness with carbon emission reduction, enhancing economic viability and environmental sustainability in crisis-prone maritime scenarios. Future research should explore real-time data integration and adaptive strategies to improve naval escort operations’ robustness and responsiveness.