2023
DOI: 10.37236/11472
|View full text |Cite
|
Sign up to set email alerts
|

A Bijective Proof of a Generalization of the Non-Negative Crank-Odd Mex Identity

Abstract: Recent works of Andrews–Newman, and Hopkins–Sellers unveil an interesting relation between two partition statistics, the crank and the mex. They state that, for a positive integer $n$, there are as many partitions of $n$ with non-negative crank as partitions of n with odd mex. In this paper, we give a bijective proof of a generalization of this identity provided by Hopkins, Sellers and Stanton. Our method uses an alternative definition of the Durfee decomposition, whose combinatorial link to the crank was rece… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?