Computational workload is one of the key challenges in biometric identification systems. The naïve retrieval method based on an exhaustive search becomes impractical with the growth of the number of the enrolled data subjects. Consequently, in recent years, many methods with the aim of reducing or optimising the computational workload, and thereby speeding-up the identification transactions, in biometric identification systems have been developed. In this article, a taxonomy for conceptual categorisation of such methods is presented, followed by a comprehensive survey of the relevant academic publications, including computational workload reduction and software/hardware-based acceleration. Lastly, the pertinent technical considerations and trade-offs of the surveyed methods are discussed, along with an industry perspective, and open issues/challenges in the field.