The issue of thermal control for space missions has been critical since the early space missions in the late 1950s. The demands in such environments are heightened, characterized by significant temperature variations and the need to manage substantial densities of heat. The current work offers a comprehensive survey of the innovative materials and thermal fluids employed in the aerospace technological area. In this scope, the materials should exhibit enhanced reliability for facing maintenance and raw materials scarcity. The improved thermophysical properties of the nanofluids increase the efficiency of the systems, allowing the mass/volume reduction in satellites, rovers, and spacecraft. Herein are summarized the main findings from a literature review of more than one hundred works on aerospace thermal management. In this sense, relevant issues in aerospace convection cooling were reported and discussed, using heat pipes and heat exchangers, and with heat transfer ability at high velocity, low pressure, and microgravity. Among the main findings, it could be highlighted the fact that these novel materials and fluids provide enhanced thermal conductivity, stability, and insulation, enhancing the heat transfer capability and preventing the malfunctioning, overheating, and degradation over time of the systems. The resulting indicators will contribute to strategic mapping knowledge and further competence. Also, this work will identify the main scientific and technological gaps and possible challenges for integrating the materials and fluids into existing systems and for maturation and large-scale feasibility for aerospace valorization and technology transfer enhancement.