Proceedings of the Genetic and Evolutionary Computation Conference 2021
DOI: 10.1145/3449639.3459356
|View full text |Cite
|
Sign up to set email alerts
|

A bio-inspired spatial defence strategy for collective decision making in self-organized swarms

Abstract: General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commer… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 27 publications
0
2
0
Order By: Relevance
“…A protective mechanism based on the behavior of bees and clarifying its efficacy through a multi-agent model employing decision-making mechanisms was proposed by [10]. The results point out that the mechanism is effective in reaching an agreement and decreasing decision-making time.…”
Section: Navigationmentioning
confidence: 99%
See 1 more Smart Citation
“…A protective mechanism based on the behavior of bees and clarifying its efficacy through a multi-agent model employing decision-making mechanisms was proposed by [10]. The results point out that the mechanism is effective in reaching an agreement and decreasing decision-making time.…”
Section: Navigationmentioning
confidence: 99%
“…This concise overview facilitates a comprehensive understanding of the diverse applications of AI in swarm robotics, alongside the testing environments and specific methodologies employed across the studies. -√ Large language model (LLM) [21] -√ RL algorithm [5] √ -Dueling Double Deep Q-Network (D3QN) [6] √ -Deep Learning Trained by Genetic Algorithm (DL-GA) [8] √ -3D StringNet herding [10] √ -Decision-making mechanisms [12] √ -Deep Imitation Reinforcement Learning (DIRL) [17] Augmented Lagrangian particle swarm optimization (ALPSO) [20] √ √ Automatic modular design approach (AutoMoDe) [24] Coordination -√ AudioLocNetv(deep learning module) [31] √ -Not specified [32] √ -End-to-end Neural Networks to train robots [27] √ -Mean-field feedback control [28] √ -Deep Neural Network (DNN) model [29] √ -variant of the crawling probabilistic road map motion planning algorithm [33] √ -distributed online reinforcement learning method [34] √ -coordination algorithm [51] Optimization -√ PSO algorithm [53] -√ streamlined algorithms [36] √ -Genetic algorithm (GA) [46] √ -Particle Swarm Optimization (PSO) [49] √ -Robot Bean Optimization Algorithm (RBOA) [50] √ -Automatic modular design method: AutoMoDe-Cedrata and AutoMoDe-Maple [52] √ -PPO algorithm [54] √ -Dijkstra algorithm [55] √ -WC and WET algorithms [44] √ √ Decentralized ergodic planning [35] Optimization and Navigation √ -YOLOv8 [41] √ -Quantum-based path-planning algorithm and Grover's search algorithm [42] √ -Genetic algorithms (GA) and Cellular automata techniques [9] √ -Mean-Field Control (MFC), deep reinforcement learning (RL), and collision avoidance algorithms [22] Optimization and Coordination √ -Knowledge-Based Neural Ordinary Differential Equations (KNODE) [23] √ -Surrogate models ...…”
Section: Internationalmentioning
confidence: 99%