In this paper, the Bayesian estimation for the unknown parameters for the bivariate generalized exponential (BVGE) distribution under Bivariate censoring type-I samples with constant stress accelerated life testing (CSALT) are discussed. The scale parameter of the lifetime distribution at constant stress levels is assumed to be an inverse power law function of the stress level. The parameters are estimated by Bayesian approach using Markov Chain Monte Carlo (MCMC) method based on Gibbs sampling. Then, the numerical studies are introduced to illustrate the approach study using samples which have been generated from the BVGE distribution.