In applications of survival analysis, the failure rate function may frequently present a unimodal shape. In such cases, the log-normal and log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the odd log-logistic Weibull distribution is proposed for modelling data with a decreasing, increasing, unimodal and bathtub failure rate function as an alternative to the log-Weibull regression model. For censored data, we consider a classic method to estimate the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals is determined and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the new regression model applied to censored data. We analyse a real data set using the log-odd log-logistic Weibull regression model.