Abstract:Being able to quickly detect anomalies and reason about their root causes in critical manufacturing systems can significantly reduce the analysis time to bring operations back online, thus reducing expensive unplanned downtime. Machine learning-based anomaly detection approaches often need significant amounts of labeled data for training and are challenging to scale for manufacturing deployments. A robust blended system dynamics and discrete event simulation physics-based modeling methodology is proposed for t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.