1996
DOI: 10.1007/978-3-642-61159-9_27
|View full text |Cite
|
Sign up to set email alerts
|

A Bonsaï Branch and Bound Method Applied to Voting Theory

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0

Year Published

2007
2007
2014
2014

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 6 publications
0
5
0
Order By: Relevance
“…Several branch and bound methods, more or less sophisticated, have been designed to solve the real-life problems quoted above (and even to enumerate all the optimal solutions) or to solve randomly generated instances with n up to 100 (see references above and for example Bermond and Kodratoff 1976;Burkov and Groppen 1972;Charon et al 1992bCharon et al , 1996bCharon et al , 1997aHudry 2001b, 2006;Christof and Reinelt 2001;Cook and Saipe 1976;de Cani 1972;Flueck and Korsh 1974;Grötschel et al 1984aGrötschel et al , 1984bGrötschel et al , 1985aGrötschel et al , 1985bGuénoche 1977Guénoche , 1986Guénoche , 1988Guénoche , 1995Guénoche , 1996Guénoche et al 1994;Hudry 1989Hudry , 1998Jünger 1985;Kaas 1981;Korte andOberhofer 1968, 1969;Lenstra Jr. 1973;Borchers 1996, 2000;Phillips 1967Phillips , 1969Reinelt 1985;Remage and Thompson 1966;Tüshaus 1983;Wessels 1981;Woirgard 1997;Younger 1963). For instance, Korte andOberhofer (1968, 1969) solved random tournaments (with the same probability for the two orientations of each arc) with 13 vertices.…”
Section: Cutting Planes and Branching Methodsmentioning
confidence: 98%
See 2 more Smart Citations
“…Several branch and bound methods, more or less sophisticated, have been designed to solve the real-life problems quoted above (and even to enumerate all the optimal solutions) or to solve randomly generated instances with n up to 100 (see references above and for example Bermond and Kodratoff 1976;Burkov and Groppen 1972;Charon et al 1992bCharon et al , 1996bCharon et al , 1997aHudry 2001b, 2006;Christof and Reinelt 2001;Cook and Saipe 1976;de Cani 1972;Flueck and Korsh 1974;Grötschel et al 1984aGrötschel et al , 1984bGrötschel et al , 1985aGrötschel et al , 1985bGuénoche 1977Guénoche , 1986Guénoche , 1988Guénoche , 1995Guénoche , 1996Guénoche et al 1994;Hudry 1989Hudry , 1998Jünger 1985;Kaas 1981;Korte andOberhofer 1968, 1969;Lenstra Jr. 1973;Borchers 1996, 2000;Phillips 1967Phillips , 1969Reinelt 1985;Remage and Thompson 1966;Tüshaus 1983;Wessels 1981;Woirgard 1997;Younger 1963). For instance, Korte andOberhofer (1968, 1969) solved random tournaments (with the same probability for the two orientations of each arc) with 13 vertices.…”
Section: Cutting Planes and Branching Methodsmentioning
confidence: 98%
“…For instance, the use of a heap to code the best-first strategy branch and bound tree in Charon et al (1996b) reduces the complexity from O(n!) in Barthélemy et al (1989) down to O(n log n) to find the best leaf to expand.…”
Section: Cutting Planes and Branching Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Several branch and bound methods, more or less sophisticated, have been designed to solve the real-life problems quoted above (and even to enumerate all the optimal solutions) or randomly generated instances with n up to 100 (see references above and for example Bermond and Kodratoff 1976;Burkov and Groppen 1972;de Cani 1972;Charon et al 1992bCharon et al , 1996bCharon et al , 1997aHudry 2001b, 2006;Christof and Reinelt 2001;Cook and Saipe 1976;Flueck and Korsh 1974;Grötschel et al 1984aGrötschel et al ,b, 1985aGuénoche 1977Guénoche , 1986Guénoche , 1988Guénoche , 1995Guénoche , 1996Guénoche et al 1994;Hudry 1989Hudry , 1998Jünger 1985;Kaas 1981;Korte andOberhofer 1968, 1969;Lenstra Jr. 1973;Mitchell andBorchers 1996, 2000;Phillips 1967Phillips , 1969Reinelt 1985;Remage and Thompson 1966;Tüshaus 1983;Wessels 1981;Woirgard 1997;Younger 1963). For instance, Korte andOberhofer (1968, 1969) solved random tournaments (with the same probability for the two orientations of each arc) with 13 vertices.…”
Section: Cutting Planes and Branching Methodsmentioning
confidence: 98%
“…For instance, the use of a heap to code the best-first strategy branch and bound tree in Charon et al (1996b) reduces the complexity from O(n!) in Barthélemy et al (1989) down to O(nlog n) to find the best leaf to expand.…”
Section: Cutting Planes and Branching Methodsmentioning
confidence: 99%