BackgroundCumulating reports suggest that acute phase proteins (APPs) do not only play a role as systemic inflammatory mediators, but are also expressed in different tissues as local reaction to inflammatory stimuli. The present study aimed to evaluate presence and changes in luminal lung concentrations of the APPs haptoglobin (Hp), lipopolysaccharide binding protein (LBP), C-reactive protein (CRP), and lactoferrin (Lf) in calves with an acute respiratory disease experimentally induced by Chlamydia (C.) psittaci.ResultsIntra-bronchial inoculation of the pathogen resulted in a consistent respiratory illness. In venous blood of the infected calves (n = 13), concentrations of plasma proteins and serum LBP were assessed (i) before exposure and (ii) 8 times within 14 days after inoculation (dpi). Increasing clinical illness correlated significantly with increasing LBP—and decreasing albumin concentrations in blood, both verifying a systemic acute phase response.Broncho-alveolar lavage fluid (BALF) was obtained from all 13 calves experimentally infected with C. psittaci at 4, 9 and 14 dpi, and from 6 uninfected healthy calves. Concentrations of bovine serum albumin (BSA), Hp, LBP, CRP and Lf in BALF were determined by ELISA. In infected animals, absolute concentrations of LBP and Hp in BALF correlated significantly with the respiratory score. The quotient [LBP]/[BSA] in BALF peaked significantly in acutely infected animals (4 dpi), showed a time-dependent decrease during the recovery phase (9-14 dpi), and was significantly higher compared to healthy controls. Concentrations of Hp and Lf in BALF as well as [Hp]/[BSA]—and [Lf]/[BSA]-quotients decreased during the study in infected animals, but were never higher than in healthy controls. CRP concentrations and [CRP]/[BSA]-quotient did not express significant differences between infected and healthy animals or during the course of infection.ConclusionIn conclusion, absolute concentrations of LBP in blood and BALF as well as the quotient [LBP]/[BSA] in BALF perfectly paralleled the clinical course of respiratory illness after infection. Beside LBP, the suitability of Hp and Lf as local biomarkers of respiratory infections in cattle and their role in the local response to pathogens is worth further investigation, while CRP does not seem to play a role in local defense mechanisms of the bovine lung.