The devastating impact of malaria includes significant mortality and illness worldwide. Increasing resistance of the causative parasite, Plasmodium, to existing antimalarial drugs underscores a need for additional compounds with distinct modes of action in the therapeutic development pipeline. Here we showcase peptide‐drug conjugates (PDCs) as an attractive compound class, in which therapeutic or lead antimalarials are chemically conjugated to cell‐penetrating peptides. This approach aims to enhance selective uptake into Plasmodium‐infected red blood cells and impart additional cytotoxic actions on the intraerythrocytic parasite, thereby enabling targeted drug delivery and dual modes of action. We describe the development of PDCs featuring four compounds with antimalarial activity – primaquine, artesunate, tafenoquine and methotrexate – conjugated to three cell‐penetrating peptide scaffolds with varied antiplasmodial activity, including active and inactive analogs of platelet factor 4 derived internalization peptide (PDIP), and a cyclic polyarginine peptide. Development of this diverse set of PDCs featured distinct and adaptable conjugation strategies, to produce conjugates with in vitro antiplasmodial activities ranging from low nanomolar to low micromolar potencies according to the drug cargo and bioactivity of the partner peptide. Overall, this study establishes a strategic and methodological framework for the further development of dual mode of action peptide‐drug antimalarial therapeutics.