Abstract:At the high water cut stage, the residual oil in a reservoir becomes complex and dispersed. Moreover, it is challenging to achieve good predictions of the movement of oil and water in a reservoir according to the macroscopic models based on the statistic parameters of this scenario. However, pore-scale simulation technology based on directly tracking the interaction among different phases can make an accurate prediction of the fluid distribution in the pore space, which is highly important in the improvement of the recovery rate. In this work, pore-scale simulation methods, including the pore network model, lattice Boltzmann method, Navier-Stokes equation-based interface tracking methods, and smoothed particle hydrodynamics, and relevant technologies are summarized. The principles, advantages, and disadvantages, as well as the degree of difficulty in the implementation are analyzed and compared. Problems in the current simulation technologies, micro sub-models, and applications in physicochemical percolation are also discussed. Finally, potential developments and prospects in this field are summarized.